
Download free eBooks at bookboon.com

SQL: A Comparative Survey

73

Relational Algebra—The Foundation

4 Relational Algebra—
The Foundation

4.1 Introduction

The theory book’s Chapter 4 describes some operators, as manifested in Tutorial D, that together
constitute an algebra that is not only relationally complete but also irreducibly so (very nearly—
apart from RENAME, which can be expressed in terms of extension and projection, none of those
operators can be discarded without sacrificing completeness). We can use these operators as a basis for
testing SQL for relational completeness. If we can show that for every invocation of one of these
Tutorial D operators there is an equivalent SQL expression, then we will have shown that SQL is
relationally complete. By “equivalent” we mean an expression whose table operands are counterparts of
the Tutorial D relation operands (ignoring the ordering that SQL imposes on the columns) and whose
result is a table counterpart of Tutorial D’s result, where a table is a counterpart of a relation if and only
if it satisfies all of the following conditions:

• every column has a name
• no two distinct columns have the same name
• no row appears more than once
• NULL doesn’t appear in place of a value anywhere in the table
• every row consists entirely of its column values and doesn’t somehow contain any additional

data

Strictly speaking, SQL cannot be regarded as relationally complete until it recognizes the existence of
relations of degree zero: TABLE_DEE and TABLE_DUM in Tutorial D. Charitably overlooking that
omission, we will discover that SQL is otherwise relationally complete, though it wasn’t so prior to 1992.
However, the table counterparts we will find in SQL will give opportunities for further comment on the
language design. We will also discover some of the consequences that arise when SQL’s operators are
used on tables that do not satisfy all of these conditions.

Figure 4.1, repeated from the theory book, shows the current values of relvars named IS_CALLED and
IS_ENROLLED_ON, which we will now take to be SQL tables (as the current values of SQL base tables).

Please note very carefully that all examples and accompanying explanations assume, unless
otherwise stated to the contrary, that the tables involved satisfy the above conditions. Otherwise, as
they say, “all bets are off”.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

74

Relational Algebra—The Foundation

IS_CALLED IS_ENROLLED_ON

StudentId Name StudentId CourseId

S1 Anne S1 C1

S2 Boris S1 C2

S3 Cindy S2 C1

S4 Devinder S3 C3

S5 Boris S4 C1

Figure 4.1: IS_CALLED and IS_ENROLLED_ON

This will be our running example here too.

In the theory book Example 4.1 is the first example of an invocation of a relational operator, using JOIN
to derive the ENROLMENT relation from IS_CALLED and IS_ENROLLED_ON. Here it shows an SQL
equivalent to IS_CALLED JOIN IS_ENROLLED_ON.

Example 4.1: Joining IS_CALLED and IS_ENROLLED_ON in SQL

SELECT * FROM IS_CALLED NATURAL JOIN IS_ENROLLED_ON

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

SQL: A Comparative Survey

75

Relational Algebra—The Foundation

This is an example of an SQL table expression. I have been assuming you are already familiar with the
SELECT-FROM-WHERE structure for certain table expressions. Here I give an explanation in a different
style from that found in the SQL text books, appealing to the concept of operator invocation that is used
in the theory book.

Explanation 4.1

• Example 4.1 is an invocation of the SQL operator SELECT and for that reason I shall refer
to such table expressions as SELECT expressions.

• Here the SELECT operator operates on the table denoted by the table expression FROM
IS_CALLED NATURAL JOIN IS_ENROLLED_ON, an invocation of the operator
FROM. I shall call such table expressions FROM expressions.

• The FROM operator here is operating on the table denoted by the table expression
IS_CALLED NATURAL JOIN IS_ENROLLED_ON, an invocation of the operator
NATURAL JOIN.

• NATURAL JOIN here is operating on the tables denoted by the table expressions IS_
CALLED and IS_ENROLLED_ON, each in turn denoting the table that is the current value
of the variable (base table) of that name.

• NATURAL JOIN is almost equivalent to Tutorial D’s JOIN. It differs only in being
noncommutative because of the ordering to the columns of an SQL table. The common
columns appear first in the result, in the order in which they appear in the left operand. Then
come the remaining columns of the left operand, followed by the remaining columns of the
right operand. As in Tutorial D, common columns must be of the same type in both operands.

• FROM is an operator that takes a commalist of one or more table expressions. In this
example the list has just one element, IS_CALLED NATURAL JOIN IS_ENROLLED_
ON, and the result is that table. An invocation of FROM is usually referred to as a FROM
clause. A FROM clause is not permitted to exist in isolation—it must appear in some
containing SELECT expression. Similarly, some table expressions are permitted only when
they appear as elements of a FROM clause. Simple table names and invocations of NATURAL
JOIN are a case in point. The result of a FROM clause must always be operated on by some
other clause. In Example 4.1 it is operated on by a SELECT clause. It can also be operated
on by any clause that immediately follows it syntactically, such as a WHERE clause, for
example. As we shall see, SQL dictates a strict order in which the clauses of a SELECT
expression must appear. Evaluation always starts at the FROM clause, then proceeds forwards
from clause to clause, then finally back to the SELECT clause.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

76

Relational Algebra—The Foundation

• SELECT is an operator that takes an explicit or, as in Example 4.1, implicit commalist of
column specifications followed by an invocation of FROM. The text from the word SELECT
up to, but not including, the word FROM is usually referred to as a SELECT clause. The
clauses following the SELECT clause define a table on which the SELECT clause operates.
The shorthand SELECT * is equivalent to a commalist specifying each column in turn
of the input table defined by the following clauses. Thus, SELECT * FROM t is very
similar to Tutorial D’s identity projection, t{ALL BUT}—it yields the table t. (When t is
just a single table name, the shorthand TABLE t is available as equivalent to the SELECT
expression SELECT * FROM t.)

Historical Note:

It is commonly believed that the term Structured Query Language, sometimes taken to be the
full name for SQL, is inspired by the SELECT-FROM-WHERE structure. This may be the case,
but it is not clear whether that was the intention of the authors of SEQUEL. The Abstract for
that paper gives a clue: “Moreover, the SEQUEL user is able to compose these basic templates
[SELECT-FROM-WHERE templates] in a structured manner to form more complex queries.”
That “structured manner” might have referred to SEQUEL’s support for nesting one SELECT-
FROM-WHERE structure within another.

The syntax SELECT * FROM was not included in SEQUEL because the SELECT clause itself
was optional, as was the key word FROM. Thus, SQL expressions such as SELECT * FROM
T1 and SELECT * FROM T1, T2 could be written as just T1 and T1, T2 in SEQUEL.
The shorthand TABLE t was added to the SQL standard in 1992 but remains an optional
conformance feature.

Figure 4.2 shows the result of evaluating Example 4.1. You can see that it depicts exactly the same table
as the current value of ENROLMENT shown in Figure 1.2. Note in particular that the left-to-right order
of the columns is as shown in Figure 1.2. When the table operands are reversed the result is the different
SQL table depicted in Figure 4.2a.

StudentId Name CourseId

S1 Anne C1

S1 Anne C2

S2 Boris C1

S3 Cindy C3

S4 Devinder C1

Figure 4.2: The result of IS_CALLED NATURAL JOIN IS_ENROLLED_ON

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

77

Relational Algebra—The Foundation

StudentId CourseId Name

S1 C1 Anne

S1 C2 Anne

S2 C1 Boris

S3 C3 Cindy

S4 C1 Devinder

Figure 4.2a: The result of IS_ENROLLED_ON NATURAL JOIN IS_CALLED

Effect of NULL

Let c be a common column in t1 NATURAL JOIN t2. Then there can be no row in the result for
which c IS NULL evaluates to TRUE, even if both operands contain such a row. In fact, for each
common column c, c=c IS UNKNOWN must evaluate to FALSE for every row of the result. (Recall
that c=c IS UNKNOWN can evaluate to TRUE even when c IS NULL does not.)

Historical Notes

It is commonly believed that the term Structured Query Language, sometimes taken to be the full
name for SQL, is inspired by the SELECT-FROM-WHERE structure. This may be the case, but it is
not clear whether that was the intention of the authors of SEQUEL. The Abstract for that paper gives a
clue: “Moreover, the SEQUEL user is able to compose these basic templates [SELECT-FROM-WHERE
templates] in a structured manner to form more complex queries.” That “structured manner” might
have referred to SEQUEL’s support for nesting one SELECT-FROM-WHERE structure within another.

The syntax SELECT * FROM was not included in SEQUEL because the SELECT clause itself was
optional, as was the key word FROM. Thus, SQL expressions such as SELECT * FROM T1 and
SELECT * FROM T1, T2 could be written as just T1 and T1, T2 in SEQUEL. The shorthand
TABLE t was added to the SQL standard in 1992 but remains an optional conformance feature.

What if NATURAL JOIN is missing?

In the absence of NATURAL JOIN Example 4.1 has to be replaced by something rather more longwinded,
as shown in Example 4.1a.

Example 4.1a: Joining IS_CALLED and IS_ENROLLED_ON in original SQL

SELECT IC.StudentId, Name, CourseId

FROM IS_CALLED AS IC, IS_ENROLLED_ON AS IE

WHERE IC.StudentId = IE.StudentId

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

78

Relational Algebra—The Foundation

Explanation 4.1a

• The FROM clause now has two elements. When there are two elements, t1 and t2, the result
is equivalent to t1 CROSS JOIN t2, which is SQL’s counterpart of t1 TIMES t2
in Tutorial D. However, TIMES requires its operands to have disjoint headings, whereas
CROSS JOIN is defined for all pairs of SQL tables. When t1 and t2 each have a column
named c, the result has two columns named c. In general, when t1 has m columns named c
and t2 has n, t1 CROSS JOIN t2 has m+n columns named c.

• Following the FROM clause is a WHERE clause, denoting an invocation of the operator
WHERE. The operands are the table resulting from the FROM clause and the condition
following the word WHERE. SQL’s WHERE operator is equivalent to Tutorial D’s operator of
the same name when its table operand represents a relation.

• The result of the FROM clause has two columns of the same name, StudentId. The
condition specified in the WHERE clause uses range variables, IC and IE, to distinguish
between these two columns. The distinction is possible here, thanks to the fact that the same
column name isn’t used more than once in either of the two operand tables (as we shall see
later, that is a condition that does not always apply, even though the same column name
cannot be used more than once in a base table).

• The range variables are defined in the FROM clause alongside the table expressions to which
they apply. The key word AS separating the table expression from the range variable name
is optional. If the table expression consists of just a table name, unaccompanied by a range
variable, then that table name serves also as a range variable name.

• A range variable is so-called because it is considered to “range over” each element in turn of
a collection, the collection in the example at hand being the rows of a table. Note carefully
that although the expression IE.StudentId is a column reference, it is not a column
name. It references a particular column named StudentId. The prefix “IE.” is required
because without it the column reference would be ambiguous.

Historical Notes

You may have learned a different term for range variable, which was used by Codd in his early papers
but not adopted by the SQL standard until 2003. In some SQL texts it is called alias but this is not at all
appropriate, really, because that would imply that it is a table name and therefore denotes a table rather
than a row. The SQL standard uses the equally inappropriate term correlation name (it doesn’t denote
a correlation, whatever that might be), but only for the case where the name is explicitly given (via AS
in the example) and not for the case where a simple table name doubles as a range variable name. In
SQL:2003 range variable was adopted as a convenient single term to cover the more general case.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

79

Relational Algebra—The Foundation

In his seminal 1970 paper [3] E.F. Codd defined the relational algebra, subsequently adopted in various
guises by ISBL, Business System 12, and much later, Tutorial D. Such an algebra was clearly suited to
the conventional style of most computer languages, but also in that paper Codd proposed an alternative
approach based more closely on the predicate calculus. He called this notation relational calculus and in
a later paper [4] proposed a concrete syntax which he called “Data Sublanguage ALPHA”.

It seems that the authors of SEQUEL took inspiration from both relational algebra and Codd’s ALPHA,
as well as the style of the typical scripting languages of that time that were used for generating reports
from files. (The SEQUEL paper explicitly mentions as a source of inspiration such a scripting language,
the IBM product GIS—Generalized Information System.)

The idea to use range variables in SEQUEL, thence in SQL, came from ALPHA. Now, when the planners
of Business System 12 (of which I was one) were studying Codd’s papers, we realized very early on that
we needed to choose a style for our language. The algebra appealed because of its conventionality as a
set of operators closed over something—relations, of course—and happily the prototype implementation
ISBL, which used the algebra defined in reference [14], provided answers to various questions that
Codd’s proposal had raised, in particular, questions concerning the headings of relations resulting from
invocations of these operators.

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

SQL: A Comparative Survey

80

Relational Algebra—The Foundation

ALPHA also had appeal, but a similar question concerning headings arose and this time we could not
find a satisfactory answer. Were these “dot qualified” names arising from the use of range variables to
be the actual attribute names in the result’s heading? If so, what if that relation were input to another
ALPHA expression? Did the result of that expression have doubly qualified attribute names? And so
on, yielding longer and longer names with more and more dots in them? If so, well, we didn’t think
that would be acceptable and in any case in those days computer memory was at a premium and for
performance reasons we needed reasonably small, fixed-length storage slots to accommodate attribute
names. On the other hand, if these qualifiers did not appear in the result headings, how were attributes
of the same name to be distinguished? We decided against support for notation based on Codd’s calculus,
because no implementation had been made to provide answers to these questions. Moreover, if and when
satisfactory answers appeared, then we would have the option to provide such support as a mapping to
the algebra-based language—an alternative interface for users who might prefer that style.

The authors of SEQUEL decided differently. In fact they decided to be different from both the algebra
and the calculus. They decided that in a base table each column would have a unique name but that
requirement would not carry through in general to results of table expressions. The presence of two or
more columns with the same name didn’t matter much in SEQUEL, or in SQL prior to 1992, because
table expressions other than simple table names were not permitted to appear as operands of FROM—
the language was thought by some, erroneously as it turned out, to be relationally complete even with
that restriction. A similar remark applies in connection with columns that have no name at all, as in
SELECT SUM(X) FROM T, for example. If tables with such columns can arise only as results of
SELECT expressions, and SELECT expressions aren’t permitted in FROM clauses, then there’s never any
possibility to reference such columns by name, and if the language is complete, then there isn’t any need
to either. The reason why relational completeness in SQL requires support for SELECT expressions in
the FROM clause is given in Chapter 5, Section 5.6, Summarization in SQL.

Another point motivating the decisions taken in ISBL and BS12 was that it was felt that every expression
denoting a relation should be assignable to a relation variable of the same type. SEQUEL was silent on
the subject of variables but in SQL not every table expression can be the value of a base table, because
a base table is required to have a unique name for every column.

As for the strange restrictions that govern the syntax of SELECT expressions, requiring a query to be
expressed as a fixed sequence of invocations of specific operators, that would have been presumably
inspired by GIS. The typical style of report generation languages in those days was based around something
like this, assuming for simplicity that a single input file contains all the data needed for the report:

1. Specify the input file, whose physical layout in terms of fields in records would be described
in something called the Data Dictionary, which gave names to those fields. So this became
SEQUEL’s FROM clause.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

81

Relational Algebra—The Foundation

2. Specify a condition to select the desired records from that file. So that became the WHERE
clause.

3. Specify the values, derived from the selected records, that were to appear in the output
report. So that became the SELECT clause, placed first in spite of it being actually the last
step, to align the complete expression with the normal style of English sentences.

The foregoing account is largely conjecture but it seems quite reasonable from the evidence available.
Recalling that the “S” in SEQUEL and SQL originally stood for “structured” (though this latter never
became official), we can add the observation that “structured” was something of a buzz word in the
1970s, when the discipline of structured programming rightly became fashionable. However, there
is of course no connection at all between the structure of SQL table expressions and the discipline of
structured programming.

4.2 Relations and Predicates

Sections 4.2 in the theory book states the importance of the closed world assumption and applies just
as well to SQL, insofar as it can be deemed applicable in the presence of that intrusive truth value,
UNKNOWN, discussed in Chapter 3.

4.3 Relational Operators and Logical Operators

Section 4.3 in the theory book prepares the ground for subsequent sections in which each specific
relational operator is paired with its logical counterpart, such that, for example, r1 JOIN r2 denotes
the relation representing the extension of the predicate p1 AND p2, the conjunction of the predicates
for the operand relations. It follows that where we can find SQL counterparts of those relational operators,
invocations of those counterparts will in turn represent extensions of the predicates given in the theory book.

The definitions that appear in the following sections use the following conventions:

• Symbols beginning with t denote tables and those beginning with r denote rows. In the
theory book, of course, it’s the other way around, so to speak, because r stands for relation, t
for tuple.

• Because the columns of a table, and therefore the components of a row, are ordered in SQL,
the term concatenation is used in its usual sense to refer to connecting two or more things
(headings or rows), one after the other in the order specified.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

82

Relational Algebra—The Foundation

4.4 JOIN and AND

In the theory book Section 4.4 is all about one operator, JOIN. SQL’s closest counterpart, NATURAL
JOIN, has already been covered. Here we look at several other “join” operators defined in SQL. We
don’t really need to, as NATURAL JOIN, if considered as primitive, renders all the others redundant as
shorthands. But as has already been mentioned, you won’t find NATURAL JOIN in every SQL product.
CROSS JOIN has already been mentioned as the operator implicitly used in joining the tables specified
in a FROM clause’s commalist. We start by giving its full definition.

Definition of CROSS JOIN

Let s = t1 CROSS JOIN t2, where t1 and t2 are table expressions optionally accompanied by range
variables. Then:

• The heading Hs of s is the concatenation of the headings of t1 and t2, in that order.

• If r1 is a row appearing n1 times in t1 and r2 is a row appearing n2 times in t2, then the row

formed by concatenation of r1 and r2 in that order appears n1*n2 times in the body of s.

It follows that the degree of the result is the sum of the degrees of the operands and its cardinality is the
product of their cardinalities, as with r1 TIMES r2 in Tutorial D.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

SQL: A Comparative Survey

83

Relational Algebra—The Foundation

Interesting properties of CROSS JOIN

Compare these with the “interesting properties of JOIN” given in the theory book.

CROSS JOIN is associative but not commutative, for the reason given in Section 4.1.

Unlike JOIN and NATURAL JOIN, CROSS JOIN is not idempotent. Let t be any table and let n be
its cardinality. Then t CROSS JOIN t has twice as many columns as t and n2 rows.

Also unlike JOIN, CROSS JOIN has no identity value. If t is a table, there is no table t0 such that
t CROSS JOIN t0 = t. That’s because t0 would be required to have no columns and exactly one row,
but SQL doesn’t recognize the existence of tables with no columns.

We can now define FROM in terms of CROSS JOIN.

Definition of FROM

Recall that the operand of FROM is denoted by a commalist, each element of that commalist being a
table expression optionally accompanied by a range variable name. Then we can write:

FROM fe1, fe2, … fen (n 0) is equivalent to FROM fe1 CROSS JOIN fe2 CROSS JOIN … CROSS

JOIN fen.

Recall that the operands of CROSS JOIN can also include range variables. Note also that an invocation
of CROSS JOIN is itself a table expression and can thus appear in an element of a FROM clause. In the
light of that observation, consider Example 4.1b

Example 4.1b: FROM giving indistinguishable columns of same name

FROM (IS_CALLED AS IC CROSS JOIN IS_ENROLLED_ON AS IE) AS CJ

WHERE ??.StudentId = ??.StudentId

/* The StudentId columns can no longer be distinguished */

The only qualifier available for the columns of the result of that FROM clause is CJ. The range variables
IC and IE are rendered out of scope by the definition of CJ.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

84

Relational Algebra—The Foundation

Historical Notes

A restricted version of FROM was defined in SEQUEL and thence in the first implementations of SQL.
The restriction was that each operand had to be a simple table name, referencing either a base table or
a “view” (SQL’s counterpart of Tutorial D’s virtual relvars) rather than a table expression of arbitrary
complexity. This restriction, along with others concerning the table expressions on which views were
defined, is one of those that rendered SEQUEL and early SQL relationally incomplete. See Chapter 5,
Section 5.6, Summarization in SQL.

CROSS JOIN was added to the international standard in 1992, along with the other explicit JOIN
operators. It is completely redundant and can hardly be regarded as a shorthand, but perhaps its use makes
certain expressions clearer than they would otherwise be. It remains an optional conformance feature.

Another variety of JOIN is illustrated in Example 4.1c—the “named columns join”. Here the common
columns to be used for matching rows are specified explicitly in a parenthesized commalist following
the word USING. As with NATURAL JOIN, each column used for matching appears just once in the
result, so Example 4.1c is in fact equivalent to Examples 4.1 and 4.1a.

Example 4.1c: Obtaining a natural join by specifying the common columns

SELECT * FROM IS_CALLED JOIN IS_ENROLLED_ON USING (StudentId)

However, a named columns join doesn’t always have an equivalent formulation using NATURAL JOIN.
That’s because although each USING column must be a common column, it is not necessary to specify
all the common columns. A common column whose name does not appear in the USING list gives rise
to two columns of that name in the result, which therefore does not represent a relation.

To cater for cases where the columns used for matching purposes are not common columns, and/or the
matching operator is not “=”, the required joining condition can be spelled out as shown in Example
4.1d, in parentheses following the key word ON.

Example 4.1d: Explicitly specifying the join condition

SELECT *

FROM IS_CALLED JOIN IS_ENROLLED_ON

 ON (IS_CALLED.StudentId = IS_ENROLLED_ON.StudentId)

Note carefully that Example 4.1d is not equivalent to Example 4.1. That’s because the result now contains two
StudentId columns, as would of course be required if they didn’t have the same name. In fact, Example
4.1c is equivalent to the table expression obtained by replacing JOIN by a comma and ON by WHERE.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

85

Relational Algebra—The Foundation

Now, the key word JOIN in all of the foregoing examples can be harmlessly preceded by the word
INNER. SQL also supports what are called “outer joins”. The outer join of t1 and t2 contains all the
rows of the inner join and possibly some more if either operand has rows which fail to participate in
the inner join. Such a row might participate in the outer join, accompanied by NULL for each column
of the other operand. The key words LEFT, RIGHT, and FULL, each optionally followed by OUTER,
are used to specify whether unmatched rows of the first (left) operand, the second (right) operand, or
both operands, respectively, are to appear in the result. Example 4.1e shows an SQL outer join. As well
as the rows shown in Figure 4.2, a single row for student S5 appears in the result, with NULL in place
of a value for CourseId.

Example 4.1e: An SQL outer join

SELECT *

FROM IS_CALLED NATURAL LEFT JOIN IS_ENROLLED_ON

Note that adding LEFT to an invocation of CROSS JOIN has no effect unless the right-hand operand
table is empty. As outer joins in general denote tables that are not counterparts of relations, they merit
no further discussion here.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

SQL: A Comparative Survey

86

Relational Algebra—The Foundation

Historical Notes

Apart from NATURAL, CROSS, and FULL, all the JOIN options described in this section became
mandatory conformance features in SQL:1999.

When outer joins were added to SQL in 1992, the use of NULL for the noncommon columns in unmatched
rows was a fairly obvious choice. The designers of Business System 12 also recognized the requirement
for outer joins but could not use NULL for the same purpose because the decision had already been taken
not to include any such construct in that language. Instead, they defined an operator, MERGE, similar to
SQL’s LEFT JOIN but differing from LEFT JOIN in two respects. First, the values to be used for the
noncommon attributes of unmatched tuples had to be explicitly specified in the invocation (and they
had to be values, of course—there was no such thing as NULL). Secondly, the common attributes were
required to constitute a superkey of the second operand, thus guaranteeing that the join was many-to-
one or one-to-one (i.e., each tuple of the first operand would be joined with at most one tuple of the
second). In Example 4.1e the join is one-to-many, which makes the appearance of just one row for student
S5 seem somewhat arbitrary. The superkey requirement did not further restrict the second operand in
any way because BS12 required a key to be specified for every base relvar and, furthermore, from these
declared keys, and the semantics of each relational operator, BS12 was able to infer keys for the results
of invocations of relational operators.

4.5 Renaming Columns

SQL has no direct counterpart of RENAME. To derive the table on the right in Figure 4.4 from the table
on the left, Tutorial D has IS_CALLED RENAME { StudentId AS Sid }.

StudentId Name Sid Name

S1 Anne S1 Anne

S2 Boris S2 Boris

S3 Cindy S3 Cindy

S4 Devinder S4 Devinder

S5 Boris S5 Boris

Figure 4.4: Tables differing only in a column name

Example 4.2 shows how the same effect can be achieved in SQL. Note that the SELECT clause has to
include all the columns that are not subject to renaming, as well as those that are.

Example 4.2: Renaming a column

SELECT T1.StudentId AS Sid1, T1.Name, T2.StudentID AS Sid2

FROM IS_CALLED T1, IS_CALLED T2

WHERE T1.Name = T2.Name

 AND T1.StudentId < T2.StudentId

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

87

Relational Algebra—The Foundation

Explanation 4.2

• Each element of a SELECT clause is an expression of arbitrary complexity that can reference
one or more columns of the SELECT clause’s input table. Note that the expression is not
required to reference any columns: it might be just a literal, for example.

• If the expression consists of just a column reference, then the name of the referenced
column is the name of the corresponding column in the result.

• If the expression is followed by the key word AS, then the resulting column has the column
name given after that key word.

SQL allows the result to have two or more columns of the same name. For example, if we replace Sid
by Name in Example 4.2, we still have a valid SQL SELECT expression.

Historical Notes

Column renaming with AS wasn’t in SEQUEL or the early implementations of SQL. It was added to
the international standard in 1992, along with the liberation of FROM to allow table expressions in
general as operands. Without AS, some columns in the result of FROM would have to be anonymous
or have nonunique names. Such columns cannot be referenced in subsequent clauses such as WHERE
and SELECT.

The fact that, in standard SQL (though not in all implementations), AS can assign the same name to
more than one column in the same SELECT clause may surprise you. The rationale for this is that
prior to 1992 an SQL table expression could already result in a table with two or more columns of the
same name (SELECT C, C FROM T, for example, or SELECT T1.C, T2.C FROM T1, T2).
A prohibition on the use of AS for this purpose would be futile unless duplicate column names were
outlawed altogether, which was out of the question for the paramount reason of backwards compatibility.

Using RENAME in combination with JOIN

Example 4.3 in the theory book gives pairs of ids of students having the same name, by joining two
renamings of IS_CALLED. Example 4.3a gives an equivalent expression in SQL.

Example 4.3a: Renaming and joining

Student Sid1 is called Name and so is student Sid2

SELECT *

FROM (SELECT StudentId AS Sid1, Name FROM IS_CALLED)

 NATURAL JOIN

 (SELECT StudentId AS Sid2, Name FROM IS_CALLED)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

88

Relational Algebra—The Foundation

As before, the result sagely tells us that student S1 (Anne) has the same name as herself and also shows
two pairings of S1 with S5 (both named Boris). The pairing of a student id with itself can be avoided by
adding WHERE Sid1 <> Sid2 to the WHERE clause. The duplicate pairings can further be avoided
by using < instead of <> in this addition, but that trick assumes that an ordering is defined for type
SID, which is not necessarily the case. If NATURAL JOIN is not available, an expression such as the
one shown in Example 4.3b could be used instead.

Example 4.3b: Renaming and joining without NATURAL JOIN

Student Sid1 is called Name and so is student Sid2

SELECT T1.StudentId AS Sid1, T1.Name, T2.StudentID AS Sid2

FROM IS_CALLED T1, IS_CALLED T2

WHERE T1.Name = T2.Name

 AND T1.StudentId < T2.StudentId

4.6 Projection and Existential Quantification

Intuitively it might seem that projection in SQL is simply a matter of specifying the required columns
in the SELECT clause, as in Example 4.4a.

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

SQL: A Comparative Survey

89

Relational Algebra—The Foundation

Example 4.4a: Projection (incorrect)

Student StudentId is enrolled on some course.

SELECT StudentId FROM IS_ENROLLED_ON

Unfortunately, though, if some student is currently enrolled on more than one course (as indeed student
S1, Anne, is in our example database), then the row giving that student’s id appears twice in the result,
which because of that duplicate appearance does not represent a relation. To avoid multiple appearances
of the same row SQL requires you to write the word DISTINCT, as in Example 4.4b. (The key word ALL
can be given instead of DISTINCT, clarifying that duplicate rows are not to be eliminated. As ALL is
the default option, it is rarely seen in examples and I do not use it in this book.)

Example 4.4b: Projection (correct version)

Student StudentId is enrolled on some course.

SELECT DISTINCT StudentId FROM IS_ENROLLED_ON

In more complicated examples it is sometimes quite difficult to tell whether omission of DISTINCT
would give rise to duplicate rows. It might therefore seem good advice to always write DISTINCT. Indeed,
I would certainly advocate such practice to students having to write SQL expressions in solutions to
questions in exam papers, for example, but if it were followed blindly in commercial systems, then many
queries would run very much slower than need be because typical SQL implementations have little or
nothing in the way of built-in intelligence to recognize cases where duplicate rows cannot possibly arise.
Although such intelligence is quite feasible within acceptable limits (and was used in Business System
12, for example), the inclusion of DISTINCT allows SQL implementations to place the responsibility
for duplicate elimination on the user.

Recall that Tutorial D allows projection to be expressed either by listing the attributes to be included or
by listing the ones to be excluded, using ALL BUT. SQL has no counterpart of the ALL BUT variety.

Effect of NULL

Rows r1 and r2 are considered as duplicates in SQL when r1 IS NOT DISTINCT FROM r2 evaluates
to TRUE. Recall that r1 = r2 can evaluate to UNKNOWN in such cases. So SELECT DISTINCT is one of
those exceptional cases where, in the words of the SQL standard, “multiple null values are treated together”.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

90

Relational Algebra—The Foundation

Historical Notes

The requirement for the user to specify whether duplicate rows are to be eliminated was in original
SQL. In fact it was also in SEQUEL but with an interesting difference: elimination of duplicates was the
default option in SEQUEL.

It might seem a simple matter to add support for column exclusion to SQL by syntax such as SELECT
* EXCEPT <column name list>, but a proposal to that effect for the SQL standard was rejected
in 2004 as a result of objections raised by the USA delegation. They argued that the use of SELECT *
is frowned upon by most SQL experts and should be discouraged. To that end, they would accept no
enhancements to SELECT *.

Of course, the reason why SELECT * FROM T is so deprecated is that its meaning changes whenever
the definition of T is changed—for example by use of ALTER TABLE. Applications that always spell
out exactly which columns are required in the SELECT clause can be to a greater extent immune to
such schema changes. (A similar comment would apply to the use of Tutorial D expressions such as
IS_ENROLLED_ON and IS_ENROLLED_ON{ALL BUT CourseId}, but the problem is addressed
in Tutorial D by allowing an application to define its own perception of the database using a special form
of local relvar, not mentioned in the theory book.) However, in SQL the columns of a table expression
might be explicitly spelled out in the FROM clause, as in Example 4.3a, in which case the use of SELECT
* is both convenient and harmless.

How ENROLMENT was split

Example 4.5 in the theory book shows how relvars IS_CALLED and IS_ENROLLED_ON can be derived
from the original ENROLMENT relvar, using projection in the initial assignment to those relvars. Here
is how the same effect can be achieved in SQL:

Example 4.5: Splitting ENROLMENT

CREATE TABLE IS_CALLED

AS (SELECT DISTINCT StudentId, Name FROM ENROLMENT)

WITH DATA ;

ALTER TABLE IS_CALLED ADD CONSTRAINT PRIMARY KEY (StudentId) ;

CREATE TABLE IS_ENROLLED_ON

AS (SELECT DISTINCT StudentId, CourseId FROM ENROLMENT)

WITH DATA ;

ALTER TABLE ADD CONSTRAINT PRIMARY KEY (StudentId, CourseId) ;

DROP TABLE ENROLMENT ;

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

91

Relational Algebra—The Foundation

Explanation 4.5:

• CREATE TABLE IS_CALLED announces that what follows defines a base table named
IS_CALLED.

• AS (SELECT DISTINCT StudentId, Name FROM ENROLMENT) specifies that
the columns of ENROLMENT and their declared types are as in the specified expression.

• WITH DATA additionally specifies that the table resulting from the specified expression is
to be the initial value of IS_CALLED.

• ALTER TABLE IS_CALLED ADD PRIMARY KEY (StudentId) specifies a
constraint to the effect that no two distinct rows having the same StudentId value can
ever appear simultaneously in IS_CALLED. Note that this constraint has to be given as
a separate statement from the one that creates the base table. If the key word DISTINCT
had been omitted, the CREATE TABLE statement would have succeeded but the ALTER
TABLE statement would have failed because the required constraint would have been
violated by the two appearances of the row for student S1, Anne.

• Similar comments apply to the CREATE and ALTER TABLE statements for IS_
ENROLLED_ON, but in the equivalent example in the theory book I noted that the
specification KEY {StudentId, CourseId}, required by Tutorial D, is theoretically
redundant because the entire heading is always a superkey. Here, the corresponding ALTER
TABLE statement is not redundant because in the absence of any key constraints SQL allows
the same row to appear several times simultaneously in the same base table.

• DROP TABLE ENROLMENT destroys the variable we have no further use for.

Two special cases of projection

In the theory book this section describes the identity projection, r { ALL BUT }, and the projection
on no attributes, r { }, which yields TABLE_DUM when r is empty, otherwise TABLE_DEE. As we have
already seen, the identity projection is represented in SQL by SELECT * FROM t, but SQL does not
recognize the existence of columnless tables and so SELECT FROM t is not supported.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

92

Relational Algebra—The Foundation

Historical Notes

The history surrounding CREATE TABLE … AS … is given in Chapter 2, in the Historical Notes for
Section 2.11.

Various attempts have been made to develop “natural language query” products, at least in prototype
form, whereby queries expressed in a human language are translated into SQL. In the 1980s I became
peripherally involved in one such product. Its developers told me that they could handle questions such
as “Did any student score more than 90 in the relational database theory exam?” but the translation to
SQL was awkward because they had to make a special case for the generation of the SELECT clause,
which would otherwise include no columns! The Tutorial D expression for such a query would end
with a projection on no attributes, yielding either TABLE_DEE (meaning “yes”) or TABLE_DUM (“no”).

4.7 Restriction and AND

Restriction in Tutorial D is available via the WHERE operator, and so it is in SQL—we have already seen
it several times in this chapter, such as Example 4.3b. However, the subject is introduced in the theory
book by Example 4.6, showing how a certain simple restriction can be expressed using JOIN and a
relation literal. It is useful to show SQL’s counterpart of that example, giving the student ids of students
named Boris.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

SQL: A Comparative Survey

93

Relational Algebra—The Foundation

Example 4.6: joining with a table literal

SELECT DISTINCT StudentId

FROM IS_CALLED NATURAL JOIN (VALUES ('Boris')) AS T(Name)

As noted in Chapter 2, the columns of a table literal in SQL are anonymous. When a table literal is an
operand in a table expression the only way of assigning names to its columns is by giving them in the
definition of a range variable—AS T(Name) in the example. Example 4.7 shows the equivalent, more
intuitive formulation using WHERE.

Example 4.7: Restriction in SQL

SELECT DISTINCT StudentId

FROM IS_CALLED

WHERE Name = 'Boris'

The WHERE clause operates on the result of the FROM clause in analogous fashion to the way it operates
on an arbitrary relation expression in Tutorial D. Name = NAME ('Boris') is an open
expression, as defined in the theory book. The key word DISTINCT here is redundant, as it happens,
because StudentId is a declared key for IS_CALLED.

Example 4.8 in the theory book finds students whose names start with B. Example 4.8 here shows the
SQL counterpart, this being one that cannot feasibly be expressed by joining with a table literal.

Example 4.8: A more useful restriction

SELECT *

FROM IS_CALLED

WHERE SUBSTRING(Name FROM 1 FOR 1) = 'B'

Note in passing the unconventional syntax used to invoke the built-in SUBSTRING operator. An
alternative way of expression the WHERE condition, and one that has been in SQL for longer than
SUBSTRING, which first appeared in SQL:1992, is Name LIKE 'B%', in which the % character is
used as a “wild card” signifying “anything can appear here, even nothing at all”—nowadays, in search
engines and the like, * is more commonly used for such purposes.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

94

Relational Algebra—The Foundation

Effects of NULL

A note of caution needs to made here. Recall that in general a conditional expression in SQL can evaluate
to UNKNOWN as well as TRUE or FALSE. A row satisfies the WHERE condition c if and only if c is TRUE.
This is inconsistent with SQL’s treatment of database constraints, which are deemed to be satisfied
whenever they evaluate to either TRUE or UNKNOWN. Consider, for example, a constraint declared with
condition NOT EXISTS (SELECT * FROM T WHERE X <= Y), requiring every row in T
to satisfy the condition X > Y. Then it can happen that SELECT * FROM T WHERE X > Y is
empty—for example, if T is not empty but X IS NULL is true for every row—even though SELECT
* FROM T is not empty!

Historical Note

The SUBSTRING operator was added to SQL in 1992 and became a mandatory conformance feature
in SQL:1999. The motivation behind the unconventional syntax for invoking SUBSTRING and other
built-in operators lay in a desire to distinguish invocations of built-in operators syntactically from those
of user-defined operators.

4.8 Extension and AND

The theory book gives the following simple example of relational extension in Tutorial D:

EXTEND IS_CALLED : { Initial := FirstLetter (Name) }

Assuming the user-defined operator FirstLetter is available to the SQL user, this can be expressed easily
in SQL but there is a strange quirk in the grammar at play here:

SELECT IC.*, FirstLetter (Name) AS Initial

FROM IS_CALLED AS IC

Note very carefully that we have to qualify the * using the range variable, IC, which in this case ranges
over the rows of the current value of IS_CALLED. When we use a SELECT clause to “add columns” to
the table on which it operates, it seems obvious to write * to specify that every column of that operand
table is required and to follow it with a commalist of expressions denoting the additional columns. For
some reason the official SQL grammar does not allow additional columns to accompany an unadorned
*. When the FROM clause contains several entries, pure extension becomes more difficult to express in
SQL. For example, if the FROM clause defines range variables T1, T2, and T3, we could write SELECT
T1.*, T2.*, T3.* …, but that would defeat the purpose. To be able to write just a single * to
denote all the columns of the FROM table, we would have to resort to something like

SELECT T.*, …

FROM (SELECT * FROM T1, T2, T3 WHERE …) AS T

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

95

Relational Algebra—The Foundation

Quirks like this in the SQL grammar serve only to further exacerbate the difficulties for teachers and
students caused by the language’s major departures from the theory that I have already described.

Effects of NULL

In general, if some argument to a read-only operator invocation is NULL, then so is the result of that
invocation. For example, X + Y evaluates to NULL if either X IS NULL or Y IS NULL evaluates
to TRUE. There are some exceptions, IS NULL being an obvious one. User-defined operators, of course,
can make their own arrangements—my putative FirstLetter operator, for example, might be defined
to return the empty string, '', when its argument is NULL.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

SQL: A Comparative Survey

96

Relational Algebra—The Foundation

Historical Notes

Codd did not include an extension operator in his algebra. The reason he gave for this omission did not
stand up to scrutiny. He regarded the ability to compute such “additional values” as the responsibility of
the application program, using facilities of the host language rather than his proposed “data sublanguage”.
Database practitioners knew, of course, that this approach was hopelessly flawed and the designers of
ISBL and SEQUEL both came up with fairly obvious solutions to rectify matters. ISBL being based firmly
on explicit relational operators, it was a simple matter to invent extension. It was no doubt equally easy
for SEQUEL to allow “additional columns” to be specified in the SELECT clause, but their decision not
to require or even allow the user to provide names for those columns should surely have been brought
into question by the designers of SQL.

As for the quirk concerning the use of *, a proposal to allow an unadorned * to be accompanied by
additional entries in the SELECT clause was submitted in 2004 (along with the previously mentioned
proposal to support * EXCEPT) but was rejected in the face of the same objection (use of * is deprecated
and should not be encouraged by the introduction of further enhancements).

4.9 UNION and OR

SQL supports UNION explicitly but differently from the way it supports JOIN explicitly. As we have
seen, JOIN is used exclusively within the FROM clause, such that IS_CALLED NATURAL JOIN

IS_ENROLLED_ON, for example, can be an element of that clause but cannot stand alone as a table
expression. Instead, UNION always connects table expressions that can stand alone, these being:

• SELECT expressions

• TABLE tn, which is equivalent to SELECT * FROM tn, where tn is a table name

• VALUES expressions

• Invocations of UNION, INTERSECT (see Chapter 5, Section 5.2, Semijoin and
Composition) and EXCEPT (see section 4.10, Semidifference and NOT)

Actually, just as SQL has several varieties of JOIN, it also has several varieties of UNION, none of which
is equivalent to the relational operator of that name. The closest approximation to relational union is
illustrated in Example 4.9a, a translation to SQL of the theory book’s Example 4.9.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

97

Relational Algebra—The Foundation

Example 4.9a: SQL’s closest approximation to relational union

SELECT StudentId

FROM IS_CALLED

WHERE Name = 'Devinder'

UNION DISTINCT CORRESPONDING

SELECT StudentId

FROM IS_ENROLLED_ON

WHERE CourseId = 'C1''

The key word DISTINCT is optional and implied by default (somewhat curiously so, considering that
its opposite, ALL, is the default option in the SELECT clause). It specifies that no row is to appear more
than once in the result. Thus, there is never a need to include DISTINCT in either of the SELECT
clauses, and this would be the case even if the WHERE clause were omitted from the specification of the
second operand in Example 4.9a, allowing the same StudentId value to appear more than once in
that operand.

The key word CORRESPONDING specifies that operand columns are to be paired by name, just as in
relational union. Thus, the slightly revised version shown in Example 4.9b is also legal and is in fact
equivalent to Example 4.9a. Curiously, the corresponding columns do not have to be of the same type!
However, each value appearing in a corresponding column of the second operand must be “castable” to
a value in the type of its counterpart in the first operand. For example, the character string “+123” is
castable to the value 123 of type INTEGER but the character string “123.5” is not.

Example 4.9b: Union applied to disparate operands

SELECT *

FROM IS_CALLED

WHERE Name = 'Devinder'

UNION DISTINCT CORRESPONDING

SELECT *

FROM IS_ENROLLED_ON

WHERE CourseId = 'C1'

This is legal and equivalent because CORRESPONDING specifies that only the common columns of each
operand are to appear in the result. In this case StudentId is the only common column, of course. As
usual, the common columns of one operand must be of the same type as their counterparts in the other
operand. And as you might expect by now, there has to be at least one common column (SQL doesn’t
recognize the existence of columnless tables).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

98

Relational Algebra—The Foundation

A further variation, also equivalent to Example 4.9a, is shown in Example 4.9c.

Example 4.9c: Specifying the columns required

SELECT *

FROM IS_CALLED

WHERE Name = 'Devinder'

UNION DISTINCT CORRESPONDING BY (StudentId)

SELECT *

FROM IS_ENROLLED_ON

WHERE CourseId = 'C1'

The required columns can be specified explicitly in a parenthesized commalist following the key word
BY. Columns thus specified must be common to both operands but the list is not required to specify
all the common columns.

I turn now to the use of UNION without CORRESPONDING. Example 4.9d is derived from 4.9a merely
by omitting CORRESPONDING and is in fact equivalent to 4.9a, but only because the operands have
identical SELECT clauses.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

SQL: A Comparative Survey

99

Relational Algebra—The Foundation

Example 4.9d: UNION without CORRESPONDING

SELECT StudentId

FROM IS_CALLED

WHERE Name = 'Devinder'

UNION DISTINCT

SELECT StudentId

FROM IS_ENROLLED_ON

WHERE CourseId = 'C1'

When CORRESPONDING is omitted, names are not used at all in the pairing of columns. Instead, SQL’s
definition, in yet another departure from relational database theory, depends on an ordering of the
columns: the first column of the first operand is paired with the first column of the second operand, the
second with the second, and so on. As with CORRESPONDING, columns thus paired do not have to be
of the same type. Furthermore, the two operand tables must have the same number of columns, so that
there is no unpaired column in either operand, also as in relational union.

Although the operand columns in 4.9d still have the same name, StudentId, that is not a requirement
in this variety of UNION. For example, SELECT StudentId AS X could be the SELECT clause of the
second operand. However, if corresponding columns do not have the same name, then the corresponding
column in the result is effectively anonymous (the standard defines it to have an unpredictable system-
generated name). Actually, some implementations use the column names of the first operand here, thus
destroying the normal commutativity of UNION. The user of an implementation that strictly follows the
standard would perhaps be well advised always to make sure the corresponding columns have the same
name anyway, to avoid the unpredictability of system-generated names and to improve portability from
one implementation to another.

Further varieties of UNION arise when we replace the key word DISTINCT by ALL in any of the foregoing
examples, as in Example 4.9e. ALL specifies that if row r appears n times in one operand and m times
in the other, then it appears n+m times in the result—i.e., no elimination of duplicate rows takes place.

Example 4.9e: UNION ALL

SELECT StudentId

FROM IS_CALLED

WHERE Name = 'Devinder'

UNION ALL

SELECT StudentId

FROM IS_ENROLLED_ON

WHERE CourseId = 'C1''

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

100

Relational Algebra—The Foundation

Clearly, UNION ALL represents another departure from relational theory. However, it is commonly used
when the operands can be guaranteed to be disjoint because in such cases omission of ALL would incur
the possibly significant overhead of the duplicate elimination process with no effect on the final result.

Some authorities have argued that there really ought to be yet another variety of UNION, such that if
row r appears n times in one operand and m times in the other, with mn, then it appears m times in
the result. Relational devotees might smile at this observation but refrain from comment.

Effect of NULL

In the case of t1 UNION DISTINCT t2, row r appears in the result, just once, if and only if either t1
or t2 contains at least one appearance of row s such that r IS NOT DISTINCT FROM s evaluates
to TRUE. In other words, NULL is treated as equal to itself for the purposes of duplicate elimination.

Historical Notes

The grammar given in the SEQUEL paper uses the mathematical symbol ∪ for union and defines just
this single version. The body of the paper gives only a brief mention of this operator, apparently implying
that its usual mathematical definition is intended.

Original SQL included just UNION and UNION ALL. CORRESPONDING was added in 1992 but remains
an optional feature. Support for using the key word DISTINCT instead of just omitting ALL was added
in SQL:1999 but remains an optional feature.

4.10 Semidifference and NOT

In this section in the theory book I first describe the relational difference operator, named MINUS in
Tutorial D. Example 4.10 here shows SQL’s closest counterpart of that operator.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

101

Relational Algebra—The Foundation

Example 4.10: Difference in SQL

SELECT StudentId

FROM IS_CALLED

WHERE Name = 'Devinder'

EXCEPT DISTINCT CORRESPONDING

SELECT StudentId

FROM IS_ENROLLED_ON

WHERE CourseId = 'C1'

The syntax for EXCEPT exactly parallels that for UNION. The key words DISTINCT, ALL, and
CORRESPONDING have exactly the same significance as in UNION, and DISTINCT remains the default
option. When CORRESPONDING is not given, columns are paired by ordinal position, as in UNION.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

SQL: A Comparative Survey

102

Relational Algebra—The Foundation

t1 EXCEPT DISTINCT t2 returns the table consisting of a single appearance of each row that appears
in t1 but not in t2. t1 EXCEPT ALL t2 returns the table consisting of n−m appearances of each row
that appears n times in t1 and m times in t2, with n>m0.

Thanks to the implicit exclusion of noncommon attributes, EXCEPT CORRESPONDING can also
sometimes be used to obtain a semidifference (r1 NOT MATCHING r2 in Tutorial D), but only when
every column of the first operand is a common column. That is not the case in the theory book’s Example
4.11, IS_CALLED NOT MATCHING IS_ENROLLED_ON. In general, therefore, semidifference needs
to be expressed in a more elaborate longhand in SQL. Example 4.11a does it by joining the result of
Example 4.10 with IS_CALLED. Example 4.11b does it by using SQL’s comparison operator NOT IN,
meaning “is not a member of ”, in a WHERE condition. Example 4.11c

Example 4.11a: Semidifference via EXCEPT and JOIN

SELECT *

FROM (SELECT StudentId

 FROM IS_CALLED

 WHERE Name = 'Devinder'

 EXCEPT DISTINCT CORRESPONDING

 SELECT StudentId

 FROM IS_ENROLLED_ON

 WHERE CourseId = 'C1') AS T1

 NATURAL JOIN IS_CALLED

Example 4.11b: Semidifference via NOT IN and a subquery

SELECT StudentId

FROM IS_CALLED

WHERE Name = 'Devinder'

 AND StudentId NOT IN (SELECT StudentId

 FROM IS_ENROLLED_ON

 WHERE CourseId = 'C1')

Example 4.11c: Semidifference via “quantified comparison” and a subquery

SELECT StudentId

FROM IS_CALLED

WHERE Name = 'Devinder'

 AND StudentId <> ALL (SELECT StudentId

 FROM IS_ENROLLED_ON

 WHERE CourseId = 'C1')

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

103

Relational Algebra—The Foundation

The NOT IN expression in Example 4.11b appears to be testing for the appearance of a character string
in a table, but in fact the first operand in this context is short for ROW(StudentId)—and recall from
Chapter 2 that the key word ROW is optional, even when the row to be specified has more than one
column value. Thus the expression tests for the nonappearance of a given row in a given table. (You won’t
be surprised to hear that if the word NOT is omitted, then the expression becomes a test for appearance
rather than nonappearance.)

In Example 4.11c <> ALL replaces NOT IN and in the absence of NULL has the same effect. It reads,
somewhat ambiguously, as “not equal to all”. In fact the expression yields TRUE if and only if the condition
comparing StudentId values is TRUE for every row in the result of the subquery.

Effects of NULL

The treatment of NULL in invocations of EXCEPT is as for UNION. This is different from its treatment
in those of NOT IN and quantified comparisons. In the case of t1 EXCEPT t2, row r of t1 appears
in the result if and only if there does not exist a row s in t2 such that r IS NOT DISTINCT FROM s
evaluates to TRUE. Note that x NOT IN (t) evaluates to UNKNOWN whenever x = x does, including
in particular the case where x IS NULL evaluates to TRUE because every field of the row x is the null
value. Recall that when the condition given in a WHERE clause evaluates to UNKNOWN for row r, then r
does not appear in the result.

Now, suppose that IS_ENROLLED_ON contains the rows ('S4', 'C1'), (NULL, 'C1'), and no
other rows for course C1. Then 'S4' NOT IN (SELECT StudentId FROM IS_ENROLLED_ON
WHERE CourseId = 'C1') evaluates to FALSE, but 'S4' <> ALL (SELECT StudentId
FROM IS_ENROLLED_ON WHERE CourseId = 'C1') evaluates to UNKNOWN. So examples
4.11b and 4.11c are not equivalent in the presence of NULL. Nevertheless, Examples 4.11b and 4.11c are
equivalent because WHERE treats FALSE and UNKNOWN alike—a WHERE condition applied to a row has
to yield TRUE for the row to appear in the result.

Historical Notes

The grammar given in the appendix to the SEQUEL paper uses the mathematical symbol “-” as an
alternative to ∪ for union, strongly suggesting that it stands for set difference. There is no mention of this
operator in the body of the paper. However, EXCEPT was missing from original SQL and didn’t appear
in the standard until 1992. Curiously, EXCEPT without ALL is now a mandatory conformance feature
while EXCEPT ALL and both varieties of INTERSECT (ALL and DISTINCT) remain optional ones.
(INTERSECT is mentioned in the discussion on semijoin in Chapter 5, Section 5.2.) The membership
tests using IN and NOT IN were in original SQL but not in SEQUEL. SEQUEL did, however, support
quantified comparisons, those these were limited to rows and tables of degree one.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

104

Relational Algebra—The Foundation

4.11 Concluding Remarks

I have described how the following relational operators are supported, directly or indirectly, in SQL,
noting various quirks in the language on the way.

• JOIN (via NATURAL JOIN)

• RENAME (via possibly laborious longhand)

• projection (via SELECT DISTINCT)

• restriction (WHERE)

• EXTEND (via possibly laborious longhand)

• UNION (via UNION DISTINCT CORRESPONDNG)

• semidifference (NOT MATCHING in Tutorial D—via EXCEPT for special cases, otherwise
via possibly laborious longhand)

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

SQL: A Comparative Survey

105

Relational Algebra—The Foundation

The fact that SQL does support all of these operators, one way or another, makes SQL relationally
complete, apart from its failure to support TABLE_DEE and TABLE_DUM, but I have noted several
present-day features that were not in the early versions of the language, claiming that as a consequence
those early versions were, unintentionally, not relationally complete. I have not yet fully explained that
claim. That’s because my explanation involves some of the material of the next chapter, where I look
for SQL counterparts of those extra relational operators we include as “shorthands” in Tutorial D. See
Section 5.6, Summarization in SQL.

EXERCISES

1. Figure 4.13 shows the supplier-and-parts database from Chris Date’s Introduction to Database Systems
(8th edition), as shown on the inside back cover of that book (except that the attribute names there are
in upper case). The exercises assume you have access to an SQL implementation.

Figure 4.13: The suppliers-and-parts database

Execute an SQL CREATE TABLE statement for each of S, P and SP. Use INTEGER as the declared
type for STATUS and QTY, DECIMAL(5,2) for WEIGHT, and appropriate VARCHAR or CHAR types
for all the other columns. Feel free to use lower case or mixed case to suit your own taste for column
and table names, but do not otherwise change any of the given names.

Include primary key constraints as indicated by the underlining of column names in Figure 4.13.

“Populate” (as they say) each table with the values shown in Date’s tables, using SQL INSERT statements.

2. Attempt to insert a row into SP with supplier number S1, part number P1 and quantity 100. Explain
the result of your attempt.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

106

Relational Algebra—The Foundation

3. For each of the following Tutorial D expressions (taken from Exercise 5 in the theory book’s exercises
headed Working with a Database in Rel), give an SQL expression that’s as nearly equivalent as possible.

a) SP WHERE P# = 'P2'

b) S { ALL BUT Status }

c) SP { S#, Qty }

d) P NOT MATCHING (SP WHERE S# = 'S2')

e) S MATCHING (SP WHERE P# = 'P2')

f) S { City } UNION P { City }

g) S { City } MINUS P { City }

h) ((S RENAME { City AS SC }) { SC }) JOIN
((P RENAME { City AS PC }) { PC })

4. Write SQL expressions for the following queries. Compare your solutions with its counterpart in your
solutions to Exercise 6 in the theory book’s exercises headed Working with a Database in Rel.

a) Get all shipments.

b) Get supplier numbers for suppliers who supply part P1.

c) Get suppliers with status in the range 15 to 25 inclusive.

d) Get part numbers for parts supplied by a supplier in Paris.

e) Get part numbers for parts not supplied by any supplier in Paris.

f) Get city names for cities in which at least two suppliers are located.

g) Get all pairs of part numbers such that some supplier supplies both of the indicated parts.

h) Get supplier numbers for suppliers with a status lower than that of supplier S1.

i) Get supplier-number/part-number pairs such that the indicated supplier does not supply the
indicated part.

http://bookboon.com/

